Research & Development: CO2 Vapor to Liquid

The Objective

To condense high-pressure CO2 vapor into dense liquid CO2, enabling efficient handling and utilization in downstream processes.

The Challenge

The customer needed to cool CO2 vapor entering the exchanger at 800–900 psi and 55°C down to 7°C, in order to achieve a stable liquid phase. Operating at such high pressures and temperatures required a highly durable, compact solution. Standard exchangers posed risks of inefficiency, space limitations, and potential safety concerns.

The Solution

Exergy engineered a custom Shell & Tube Heat Exchanger (Model #00486-09, 54 Series) constructed entirely from 316L stainless steel. The exchanger was designed with a 2.25" shell diameter, 20" tube length, and 10.08 ft² of heat transfer area. The design utilized CO2 on the tube side and ethylene glycol on the shell side to achieve efficient cooling and condensation.

The Results / Benefits

The solution successfully cooled the CO2 vapor to 7°C, delivering cold, dense liquid CO2 for reliable process use. The compact design minimized footprint, while the robust stainless steel construction ensured long-term durability and no maintenance. This project highlights Exergy's expertise in handling high-pressure gas-to-liquid phase transitions.

ISO 9001:2015 CERTIFIED
QUALITY MANAGEMENT SYSTEM